Reaction of Tetraazapentalene Derivatives Having Fused Cyclic Systems with the I2/NH4OH Reagent

Masaaki TOMURA,[†] Noboru MATSUMURA,^{*} Atsushi ITO, Hiroo INOUE, Masanori YASUI,^{††} and Fujiko IWASAKI^{††}

Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 593

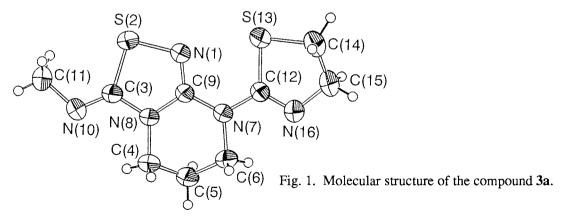
††Department of Applied Physics and Chemistry, The University of Electro-Communications,

Chofu, Tokyo 182

Tetraazapentalene derivatives having fused cyclic systems reacted with the I₂/NH₄OH reagent to give 1,2,4-thiadiazolo[4,3-a]pyrimidine derivatives with the release of the hypervalent sulfur. The molecular structure of the product was determined by the X-ray crystallographic analysis.

Recently we have reported that tetraazapentalene derivatives (1 and 2) having fused cyclic systems 1) are synthesized by the reaction of 6.7-dihydro-2.3-disubstituted 5H-2a-thia(2a- S^{IV})-2.3.4a, 7a-tetraazacyclopent[cd]indene-1.4(2H,3H)-dithione²⁾ with ω -bromoalkyl isothiocyanates. It is expected that the novel cations 1 and 2 with a hypervalent sulfur show various chemical behavior toward nucleophilic reagents.³⁾ During the course of our study on the reactivity of 1 and 2, we have found that 1 and 2 react with the I_2/NH_4OH reagent, which is used for a ring expansion of heteroaromatic cations,⁴⁾ to give 1.2.4-thiadiazolo[4.3-a]pyrimidine derivatives (3 and 4), respectively, not ring expansion products. In this communication, we describe the details of the reactions of tetraazapentalene cations 1 and 2 with the I_2/NH_4OH reagent, the spectral characterization of the products 3 and 4, and the X-ray crystallographic analysis of 3a.

A typical procedure for the reaction of tetraazapentalene cations 1 and 2 with the I_2/NH_4OH reagent is as follows: To an acetonitrile solution (10 ml) of 1a (100 mg, 0.283 mmol) were added aqueous ammonia (28%, 10 ml) and an acetonitrile solution (10 ml) of iodine (144 mg, 0.566 mmol) at room temperature. After stirring under the same conditions for 2 h, the mixture was poured into water (100 ml). The solution was extracted with


[†]Present address: Institute for Molecular Science, Okazaki, Aichi 444.

Products	R	Yield/%a)	Melting point/°C
3a	CH ₃	68	156 - 158
3 b	CH ₃ CH ₂	65	63 - 64
3 c	CH ₂ =CHCH ₂	68	102 - 103
4a	CH ₃	60	91 - 92
4 b	CH ₃ CH ₂	67	88 - 89
4 c	CH ₂ =CHCH ₂	66	oil

Table 1. The Yields and the Melting Points of the Products 3a-c and 4a-c

All reactions gave the 8-(substituted imino)-1,2,4-thiadiazolo[4,3-a]pyrimidine derivatives 3 and 4 in moderate yields with the release of the hypervalent sulfur of 1 and 2, whereas no ring expansion products were obtained. The reaction at the C=N+ moiety of 1 and 2 did not occur at all. The results are consistent with those in the reduction of 1 and 2 using sodium borohydride³⁾ and the treatment of 1 and 2 with acid.⁷⁾ In the absence of iodine, the reaction did not give the 1,2,4-thiadiazolo[4,3-a]pyrimidine derivatives 3 and 4, but a complex mixture containing a small amount of 1,3-disubstituted perhydropyrimidin-2-one derivatives⁷⁾ was obtained.

In order to determine the structure of the products, the X-ray crystallographic analysis of 3a was carried out.⁸⁾ Figure 1 shows an ORTEP II⁹⁾ drawing of compound 3a. The X-ray analysis shows that the products

have the 8-(substituted imino)-1,2,4-thiadiazolo[4,3-a]pyrimidine structure. It was found that the 1,2,4-thiadiazole ring containing N(10), C(4), N(7), and C(6) and the 4,5-dihydrothiazole ring except C(14) are nearly planar.

a) Isolated yields were based on 1 and 2.

Although the detailed mechanism is unclear at present, it is speculated that the reaction is initiated by a nucleophilic attack of ammonia on the $C=S^{IV}$ carbon of 1 and 2, followed by the cleavage of the hypervalent $S^{IV}-N^+$ bond to form the intermediate (A). The elimination of the sulfur atom from A^{10} gives the guanidine intermediate (B) which undergoes ring-closure by oxidation with I_2^{4} to afford the product 3 or 4. However, the eliminated sulfur could not be identified.

1 (or 2)
$$\frac{NH_3}{S}$$
 $\frac{(NH_2S+1)_n}{N}$ $\frac{NH}{S}$ $\frac{NH}{S}$ $\frac{NH}{N}$ $\frac{NH}{N}$

Further studies on the reactivity of the tetraazapentalene derivatives 1 and 2 having fused cyclic systems are now in progress.

References

- 1) N. Matsumura, M. Tomura, H. Chikusa, O. Mori, and H. Inoue, *Chem. Lett.*, **1989**, 965; M. Tomura, O. Mori, H. Chikusa, K. Inazu, A. Ito, N. Matsumura, and H. Inoue, *Synthesis*, **1991**, 457.
- 2) N. Matsumura, M. Tomura, O. Mori, Y. Tsuchiya, S. Yoneda, and K. Toriumi, *Bull. Chem. Soc. Jpn.*, 61, 2419 (1988).
- 3) M. Tomura, N. Matsumura, H. Chikusa, O. Mori, and H. Inoue, Chem. Express, 5, 145 (1990).
- 4) K. Yonemoto and I. Shibata, Chem. Lett., 1989, 89.

- NCH₂CH₂CH₂N), 3.01 3.13 (m, 4H, NCH₂CH₂CH₂S and CH₃CH₂), and 3.71 3.81 (m, 6H, NCH₂CH₂CH₂CH₂N and NCH₂CH₂CH₂S); 4c: 1 H NMR(CDCl₃) δ = 1.89 (m, 2H, NCH₂CH₂CH₂CH₂S), 2.10 (m, 2H, NCH₂CH₂CH₂N), 3.04 (t, 2H, NCH₂CH₂CH₂S), 3.69 3.81 (m, 8H, NCH₂CH₂CH₂N, NCH₂CH₂CH₂S, and CH₂=CHCH₂N), 5.10 5.30 (m, 2H, CH₂=CHCH₂N), and 5.91 6.04 (m, 1H, CH₂=CHCH₂N).
- 6) The molecular formula of 4c was determined by the exact MS data: Exact MS m/z 295.0943 (M+). Calcd for $C_{12}H_{17}N_5S_2$: 295.0926.
- 7) M. Tomura, N. Matsumura, O. Mori, H. Chikusa, S. Kamitani, and H. Inoue, *J. Heterocycl. Chem.*, 27, 2215 (1990).
- 8) Crystal data for 3a: $C_8H_{13}N_5S_2$, $F_w=241.34$, monoclinic, space group $P2_1/n$, a=18.558(2), b=7.4894(6), c=18.550(2) Å, $\beta=115.677(8)^\circ$, V=2323.6(4) Å³, T=297 K, F(000)=1008, Z=8, Dx=1.380 gcm⁻³, $\mu(Mo-K\alpha)=0.42$ mm⁻¹. The crystal had approximate dimensions of $0.47\times0.30\times0.1$ mm. Data were collected on a Rigaku AFC-5R diffractometer ($\lambda=0.71069$ Å). 5818 reflections were obtained in the range of $2<20<55^\circ$ by the $\omega-2\theta$ technique at a 2θ rate of 8° min⁻¹ and the scan width $\Delta\omega=(1.3+0.4\tan\theta)^\circ$. Usual Lorentz and polarization corrections were applied and absorption effect was applied numerically. 3611 observed data were used for refinement ($F>3\sigma(F)$). The structure was solved by direct method using SHELXS86¹¹⁾ and successive Fourier syntheses and refined by the block-diagonal least-square using UNICS III¹²⁾ with anisotropic temperature factors for non-H atoms and isotropic ones for H. Σ w(|Fc|-k⁻¹|Fo|)² was minimized, w = $1/[\sigma^2(F)+0.36693|Fo|-0.00057|Fo|^2]$, to give R = 0.060, $R_w=0.091$. Atomic scattering factors were taken from those of International Tables for X-ray Crystallography.¹³⁾ Computations were performed on an IBM ES/3090-180S of the Information Processing Center of the University of Electro-Communications.
- 9) C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Tennessee (1976).
- 10) S. Crook and P. Sykes, J. Chem. Soc., Perkin Trans. 1, 1977, 1791.
- 11) G. M. Sheldrick, SHELXS86, Program for Crystal Structure Determination, University of Gottingen, Federal Republic of Germany (1986).
- 12) T. Sakurai and K. Kobayashi, *Rikagaku Kenkyusho Hokoku*, **55**, 69 (1979).
- 13) "International Tables for X-ray Crystallography," ed by D. Reidel, Vol. IV, Kynoch Press, Birmingham (1974).

(Received July 15, 1992)